

Valve Endothelial Cells 🛑

Exposure to High Oscillatory Flow

Leads to Valve Interstitial Cell Calcification

Graduate Research Day

Denise Hsu March 9th, 2022

Advisors: Dr. Joshua Hutcheson, Dr. Sharan Ramaswamy

Introduction

Calcific Aortic Valve Disease:

- One of the most prevalent chronic heart problems
- Global increase by 124% between 1990 and 2017.

- Stenosis
- Regurgitation
- Reduced cardiac output

Problem Statement

- No treatments for early and intermediate stages of disease
- Severe treatment options:
 bioprosthetic or mechanical valve replacements

Valve

Bioprosthetic Valve

Re-calcification

Bioprosthetic

Valve

• Multiple operations

- Highly invasive
- Limited to selective patient subset

Background – Valve Anatomy

Esmerats et al.

Background – Valve Hemodynamics

VEC: Valve Endothelial Cells

VIC: Valve Interstitial Cells

What we know...

• Low shear stresses (< 4 dynes/cm²)

lesions and calcification

 Oscillatory flow with high calcium concentrations
 Ca²⁺ Ca²⁺ Ca²⁺ Ca²⁺ Ca²⁺

inflammation on the valve fibrosa layer

What we want to know...

Relation between

precise flow oscillations

Oscillatory Shear Index

- Oscillatory Shear Index (OSI)
 - Measurement of flow disturbance
 - Ratio between forward shear and total shear
- $0 \le OSI \le 0.50$

$$OSI = \frac{1}{2} \left(1 - \frac{\left| \int_0^T \tau_w dt \right|}{\int_0^T |\tau_w| dt} \right)$$

T: duration of cycle τ_w : wall shear stress t: time

Oscillatory Shear Index OSI

• To correlate OSI with progression of CAVD

Hypothesis

To test our hypothesis...

 Evaluate the extent to which paracrine signaling-mediated events from VECs cultured under dynamic conditions in low (OSI=0), moderate (OSI=0.25), and high (OSI=0.50) OSI environments lead to VIC calcification.

Cell Culture and Expansion

CATEGORY	Valvular Endothelial Cells (VEC)	Valve Interstitial Cells (VIC)		
CULTURE MEDIA	Endothelial Cell Growth Medium	Growth medium		
SUPPLEMENTS	1% Penicillin/Streptomycin	10% Fetal Calf Serum 1% Penicillin/Streptomycin		
CULTURE VESSEL	T75 Flask, coated with endothelial matrix	T75 Flask		

Bioflux System

- 24-well Plate
 - 8 microfluidic channels/plate
- Seeding density (Fluxion protocol):
 - 200,000 cells/channel

2

3

Fluxion Biosciences, Inc.

Pro-Calcific (PC) Ingredients

original

EX-PC

CY-PC

• 5% FBS, 1% P/S • 1.8 pv cad₂

- 3.8 mM NaH₂PO₄
- 0.4 units inorganic pyrophosphate

Rathan et al. Goto et al.

Cell Culture and Expansion

CATEGORY	Valvular Endothelial Cells (VEC)	Valve Interstitial Cells (VIC)		
CULTURE MEDIA	Endothelial Cell Growth Medium	Growth medium		
SUPPLEMENTS	1% Penicillin/Streptomycin	10% Fetal Calf Serum 1% Penicillin/Streptomycin		
CULTURE VESSEL	T75 Flask, coated with endothelial matrix	T75 Flask		

Paracrine Regulation

Cell Type	Flow Environment	Conditioning Media	Conditioning Time	Vessel
VEC	Static (no flow)	Fresh Media	48 hours	eichus 24-weit Interface
	Steady Flow (0 OSI)			
	0.25 OSI			
	0.5 OSI			Bioflux

Results – Original PC

Org-PC EX-PC CY-PC

** p<0.05 *** p<0.005

(Negative controls)

Results – EX-PC

Results – CY-PC

** p<0.05 *** p<0.005

(Negative controls)

Conclusion/Discussion

non-exosomal cytokine pathways

High OSI + PC = CAVD ?

On-going Work

• Conditioned media ELISA cytokine panel

WCB 2022 Congress Info. Scientific Program Registration & Awards Abstract Submission Sponsor & Exhibitor Social Programs Travel Info. • TGFb **9th World Congress of Biomechanics** • VEGF 2022 Taipei • TNFa **Taipei International Convention Center** • IL-1b • IL-6 July • IL-8 Co-organized by • MCP-1 10-14 • GM-CSF www.wcb2022.com ÷. WCB 2022 @2022wcb

Thank You!

Biomedical Engineering

CV-PEUTICS Cardiovascular Therapeutics Lab

Questions/Comments?